
ERHIC-SOFT/09-01
15 June 2009

ESIM

P.Nevski

Abstract

A simulation framework presented here includes a simulations program based on Geant3 and a built-

in support for a flexible geometry description. It simplifies the description of detector geometries,

automates to a large extenbt the detector response simulations, simplifies the digitisation coding and

provides a data handling mechanism with a built-in documentation and database support.

1 Introduction
In the bcomming years the eRHIC collaboration have to made a number of detector choices on the

basis of the detailed detector MC simulation. A fast and reliable way to implement these versions is to
use a dedicated geant parser (Fortran preprocessor) which is supported by a special GEANT interface
library. Maintaining the GEANT specific tables of materials, volumes, hits descriptions, etc and insuring
the internal consistency of most of the actual parameters of the GEANT routines, it significantly reduces
the amount of information the user should care of and improves the robustness of the program. Here we
describe the main rules and features of this program.

2 GEOMETRY DESCRIPTION
The geometry of each detector in ESIM is described in a single module. Modules are written in

the geant language and translated by the parser into conventional, well commented Fortran subroutines
compiled and linked with the rest of detector deascription. A module consists of the module header, the
data definition part and of a number of blocks, each describing one GEANT elementary volume and its
content.

2.1 geant language
The geant language is a Fortran extension oriented to the GEANT application. Apart from standard

Fortran statements, it contains a number of geant statements in the form:

OPERATOR NAME [keyword1=value ... keywordn=value]

where the OPERATOR defines a specific service to be performed by the Atlsim interface. Apart from
the declarations and data handling operators, described in sections 2.4 and 2.5, there are 9 GEANT
dedicated operators and 3 control operators in the geant language. For these operators:

– NAME is the name of a GEANT volume or of a volume shape (4 letters), or a material or medium
name (up to 20 letters). A Fortran string variable is generated by the parser by converting the
NAME into upper-case letters.

– Keywords (left parts of assignment) are variables used in the GEANT3 manual [1] to describe
the parameters of the corresponding GEANT3 routine 1).

– Their values (right parts of assignment) are any legal Fortran expression.

The language is neither case nor position sensitive. A geant statement can be continued on the
next line only using a comma or an underscore at the end of a line as a continuation sign. A comma
can also be used between keywords to improve the readability. All geant comments mentioned below are
mandatory. They should not contain single or double quotas inside.

A list of keywords with their values is called below a definition.

2.2 Volume description
2.2.1 General structure

Any GEANT volume in a module is described as a block. A block consists of two parts - the
description of its own properties and the description of its content - and has the following structure (last
column shows the corresponding GEANT3 routine) :

1) Few deviations from this rule where the manual names are ambiguous will be mentioned later

1

BLOCK NAME comment
MATERIAL name definition ⇒GSMATE

or few COMPONENT name definition ⇓
followed by MIXTURE name definition ⇒GSMIXT

MEDIUM name definition ⇒GSTMED
ATTRIBUTE name definition ⇒GSATT
SHAPE name definition ⇒GSVOLU

⇒GSDV(*)
a number of CREATE name
followed by POSITION name definition ⇒GSPOS(P)

HITS name definition ⇒GSDET(*)
DIGI name definition ⇒GSDET(*)

ENDBLOCK

BLOCK, ENDBLOCK and CREATE are control operators because they affect the execution order:
CREATE is executed as a jump to the requested BLOCK code and the return back when its ENDBLOCK
is reached. All other are GEANT dedicated operators and are substituted by a call to one or few GEANT
routines via the Atlsim interface.

Example 1:

Block GAAS is GaArsenid forward tracker

Material Air

Medium gaas_mother Ifield=1, FieldM=2, TmaxFd=3, Epsil=0.001,

SteMax=0.001 DeeMax=0.05 StMin=0.001

Shape TUBE Rmin=10 Rmax=50 dz=200

do idisc = 1,nint(gaag_Ndisc)

Create GDSi

Position GDSi z=+gdsi_Zdisc

Position GDSi z=-gdsi_Zdisc ThetaZ=180

enddo

endblock

The Atlsim interface maintains GEANT tables of materials, mediums, volumes and rotation matri-
ces. After checking that the requested name already exists in the corresponding table or having created
a new table entry, the interface provides the entry number to the GEANT routines.

The only mandatory operator inside a block is its SHAPE, others can be omitted. In this case
the volume properties are inherited from it’s mother volume, and position definitions are assumed to be
default (x=y=z=0, no rotation).

If needed, material, medium and attribute operators should be defined before the SHAPE operator.

2.2.2 More on SHAPE
The name argument of the SHAPE operator contains a name of any of the 16 legal GEANT

shapes described in the manual. Keywords in the definition part are the names of parameters, used in the
GEANT manual (section GEOM 050) to describe these shapes. The only exception are multiple z, Rmin

and Rmax parameters of the PCON and PGON shapes, which should be supplied as vectors named Zi,
Rmn and Rmx, defined in one of the following two forms:

vector = {val1, val2...valn}
or vector = {A(i1 : i2)}

where a vector stands for Zi, Rmn or Rmx, vali are any Fortran expressions, and A is a Fortran array.
As the parameters are transmitted to the GSVOLU routine via the Atlsim interface, they can be

provided in any order or be inherited from the mother volume.

Example 2: the PCON specification from the GEANT manual (GEOM 050, figure 23) may look
like:

SHAPE PCON phi1=180 dphi=279 Nz=4 Zi={-400,-300,300,400},

Rmn={50,50,50,50} Rmx={250,100,100,250}

The GEANT divisions are in the geant language particular cases of the SHAPE operator. The
actual division mechanism is automatically selected by the Atlsim interface dependent on the parameters
supplied.

2

Example 3: this will create divisions of a TUBE in φ using GSDVN (GEOM 130):

....

Shape TUBE Rmin=Rj Rmax=Rj+Dr Dz=D/2

Create GDij

....

Block GDij is a sector containing one counter

Shape DIVIsion Iaxis=2 Ndiv=Ndv

Create

endblock

2.2.3 Inheritance rules
Unless defined explicitly, parameters of the MATERIAL, MIXTURE, MEDIUM, and SHAPE op-

erators in a new block are inherited from the block creating this one. Normally this is also its mother
volume 2). If no material or medium are defined in a new block at all, the are inherited from the mother
block. A MATERIAL or a MEDIUM operator without parameters can be used to get parameters of
already defined materials (mixtures) or media. If no material or medium are defined in a new block at
all, the are inherited from the mother block.

A new GEANT medium, which combines both material and tracking parameters, is introduced not
only after a MEDIUM operator re-defines any of the tracking parameters, but also if a material has been
changed by a MATERIAL or MIXTURE operators.

A MATERIAL or a MEDIUM operator without parameters can be used to refer to an already
defined material (mixture) or medium.

2.3 Volume positioning
Unless defined explicitly, the parameters of a POSITION operators have the default values:

x = y = z = 0, KONLY=’ONLY, unit rotation matrix.

If the volume being positioned has been defined with all parameters equal to zero, the GSPOSP
routine will be called, otherwise the GSPOS is used. In case of the GSPOSP call, the actual parameters
of the volume shape supplied in the POSITION operator still follow the inheritance rules for the SHAPE
operator.

If a rotation should be defined when positioning a volume, it is possible to define it in two ways:
– Providing up to 6 parameters of the GEANT rotation matrix (GEOM 200). The parameter names

3) and their default values defining the unit matrix are

ThetaX = 90o, PhiX = 0o, ThetaY = 90o, PhiY = 90o, ThetaZ = 0o, PhiZ = 0o

Only those parameters which are different from the default unit matrix should be given.
Example: ThetaZ=180 in the example 1 in the second POSITION operator makes the second copy
of the GDSi volume to be positioned as a mirror reflection of the first one.

– A rotation around one of the x, y, z axis can be introduced simply by defining one of the following
parameters:

AlphaX, AlphaY or AlphaZ.

Rotation parameters are not inherited from one POSITION operator to another.

2.4 Volume naming mechanism
All volumes in ESIM are referenced by their generic names, consisting of 4 upper-case letters 4).

When the real dimensions of the same generic volume are variable, the supporting Atlsim library provides
an automatic and transparent mechanism which, for physically different volumes with the same generic
name, generates nicknames used by GEANT, by changing last letters of the generic name into numbers
or lower-case letters. These volumes with different nicknames are considered as instances of the same
generic object. The original generic name is also kept in each instance together with its nickname.

The positioning of all volumes is done using their generic names, the latest generated instance of
the object been actually used. When positioned in the same mother volume such instances will be made
different also by their GEANT copy numbers. If a volume instance has been defined with all parameters
equal to zero, it will be positioned by the Atlsim interface using the GSPOSP routine with the dimensions,
defined in the POSITION operator.

2) The exception is done only for the mentioned above vectors Zi,Rmn, Rmx of the PGON and PCON shapes.
3) Names are modified comparing to the GEANT manual 1 → x, 2 → y, 3 → z to clarify their meaning.
4) The convention is to have the same first letter for any block within a whole module

3

This mechanism provides a simple and effective way to automatically generate the unique path to
each GEANT volume, needed for the HIT package, without an additional user code.

2.5 Module header
The module header in DICE-95 is used to provide the Fortran declarations as well as the program

maintenance information. It consists of the following geant declarations :

MODULE NAME comment
AUTHOR author list
CREATED date or version
CONTENT list of GEANT volume used
STRUCTURE NAME { list of variables }
+CDE,... list of the KEEPs used.
Other Fortran declarations

Note that:
– The first line should be the MODULE declaration, the order of other statements is irrelevant. The

module name consists of a 4-letter detector code plus the module type code (GEO, DIG etc). It is
also used to identify module input and output data structures (GEANT hits and digits, DETM -
Master detector structure etc).

– The format of comment, author list and creation date is arbitrary, but their presence is mandatory.
– The CONTENT declaration should list all blocks used in the module.
– The STRUCTURE declaration groups together real variables or one-dimensional arrays, which are

subject to potential change using datacards or should be accessible from external routines, for
example at the reconstruction stage. Their usage is described in the next section.

Example:

MODULE GAASGEO is the Geometry of the GaArsenid forward tracker

Author Rene Brun, Pavel Nevski

Created 23 sept 94

Content GAAS, GDSi, GSij, GHij, GDij, GSUB, GASS, GELE, GSUP

Structure GAAG { Version, Ndisc, DrCounter, DfCounter, DzCounter,

TCKsubs, TCKsupp, DXele, DYele, Dzele }

Structure GDSi { Disc, RIdisc, ROdisc, ZDisc }

Real Zdel,Rj,Zk,DR

Integer Idisc,j,k,N,ndv

+CDE,AGECOM,GCONST.

2.6 Data structure handling
A group of logically linked variables, which are declared in a STRUCTURE operator, is defined

using the FILL statement:

FILL NAME ! bank comment
variable1 = value1 ! explanation of variable1

. . .
variablen = valuen ! explanation of variablen

Note that:
– The structure name consists of 4 letters and is used as the ZEBRA bank name and as the prefix of

its variables in the Fortran code.
– The order of assignments is irrelevant, but comments and explanations are mandatory.
– Other comment lines cannot interleave with FILL assignements.
– valuei are Fortran expressions in case of a simple variable or a vector in the form {val1, ...valk}

for an array.
– When the FILL statement is executed by the Atlsim interface, the data are saved as a bank in the

master detector (DETM) structure.
There may be two levels of data structures (banks) defined and used in a module: the structure

name, defined by the first FILL operator, becomes the high level structure name. All structures with
other names are considered as lower level structures associated to it.

Each of these structures may be a linear chain of similar banks, created by sequential FILL operators
with the same name. They all are considered as instances of the same generic object, so at any moment
only one selected copy of each structure is available. A typical usage of the high level structure is to

4

provide different geometry versions of the same detector, the actual version been selected using the
datacard input. Instances of the low level structures can be used to provide parameters for different
components of the of the same detector.

Example:

Fill GAAG ! geometry description

version = 3 ! Annecy layout

Ndisc = 2 ! Nr. of discs (on each side)

DrCounter = 5.3 ! DX (Dr) of a counter

DfCounter = 2.6 ! DY (Dphi) of a counter

DzCounter = .02 ! DZ (Thickness) of a counter

TCKsubs = .01 ! Thickness of the substrate

TCKsupp = 0.8 ! Thickness of the support

DXele = 3. ! DX (Dr) of the electronics board

DYele = 2. ! DY (Dphi) of the electronics board

DZele = .06 ! DZ (Thickness) of the electronics board

Fill GDSi ! individual disc parameters

Disc = 1 ! disc number

RIdisc = 20. ! inner Radius

ROdisc = 35. ! outer Radius

Zdisc = 156. ! Position along Z

Fill GDSi ! idem for next disc

Disc = 2 ! second disc

RIdisc = 25. ! inner Radius

ROdisc = 40. ! outer Radius

ZDisc = 185.5 ! Position along Z

Example: data structures produced by the previous example:

NONE

?

Detector main bank
ND=50NID 1

DETM

GaArsenid forward tracker
ND=15NID 1

GAAS

1

?

GEOMETRY DESCRIPTION
ND=12NID 1

GAAG

1

?

��
HHGDSIINDIVIDUAL DISC PARAMETERS

ND=6NID 1
GDSI

1

?

One can select the actual copy of the structure to be used by the program (an instance of the data
structure) with the help of the USE statement :

USE NAME variable = value

Any variable from the corresponding structure can be used to select the current instance of the
bank. The value may be any Fortran expression. Once the top level bank is selected with the USE
operator, the descendent lower level banks are selected only within the same branch. Selected banks are
re-linked at the first position of their top level banks, so that they always become default banks for any
further selection. Also at that moment their content is changed by the standard datacard input.

Once selected with the USE operator, variables from the data structure can be referenced by the
program in the form BankName Variable. In this way they are easy to recognize among the other program
variables (see first example).

This mechanism provides an easy and flexible way of the geometry versioning within each module.

3 CREATING GEANT HITS
In DICE-95 user does not need to write a detector specific routine to create GEANT hit structure

and to fill it with a useful information. Instead, a geant statements with the HITS operator, called in
a block describing a sensitive volume, is used to produce a relevant GEANT hit definitions and to steer

5

their filling at the tracking time. This statement generates all necessary GEANT calls (see GSDET and
GSDETH routines, HIT 100) with their parameters as follows:

– The set name is defined by the first 4 letters of the module name;

– The detector name is the name of the geant block ;
– Following the DICE standard, IDTYPE is taken as the detector number;

– The name argument of the HITS operator, (hit address) is the name of the volume used to
identify the hit, usually the sensitive detector itself. The Atlsim interface finds the path to the
selected volume using generic names of all higher level volumes and builds the NAMESV array. It
also defines the number of branchings and the number of bits required at all levels (NBITSV array)
to uniquely describe the path to each instance of the selected volume;

– For memory allocation defaults values of NHWI, NWDI = 1000 are used.

The definition part of the HITS operator contains a list of information quantities, measurements,
which should be saved in each GEANT hit, and their packing in one of the form

measurement : Nbit : (min, max)
or measurement : bin : (min, max)

For a measurement, Nbit or bin are mandatory and limits are optional. At present the following
variables are known as measurements to the Atlsim interface (the track point means here the middle
point of the track segment producing the hit):

– x, y, z - local Descartes coordinates of the track point in the sensitive volume;

– theta, phi, R(orRR) - local cylindrical (or polar) coordinates of this point;
– Cx, Cy, Cz - local direction cosines of the track segment;

– Ct - cosine of the angle between the track segment and the radius pointing to its center;

– TDR - closest approach of the track segment to the local z-axis;

– STEP - the length of track segment producing the hit;
– ELOS - the energy lost at this step;

– BIRK - equivalent energy of the calorimeter response (see PHYS 337);

– TOF - time of flight for this hit;
– ETOT - particle energy in the current point;

– LGAM - log10 of the particle Lorentz factor;

– ETA - pseudorapidity of the track point;

– USER - the hit quantity is calculated in a user function.
An integer number, following a measurement variable, is interpreted as Nbit - the number of bits

for packing the variable values. 0 means that the value is a cumulative sum, occupying a full computer
word. Due to the GEANT limitation 0 can be used only in last elements of the HITS statement.

If a measurement variable is followed by a real expression, it is interpreted as the packing bin size,
and the number of bits, required for packing, will be calculated by the Atlsim interface.

If the user does not provide the limits explicitly, min and/or max are determined by the Atlsim
interface using the volume dimensions.

Example:

HITS GASS X:12: Y:11: ELOSS:0:

In case of the USER element, a subroutine XXXXSTEP(pointer,hit) , where XXXX is the volume
name, will be called to provide the measurement. This subroutine should be described as EXTERNAL
in the module header. Its integer input argument pointer is the address of the hit description array (10
words, real) in the GEANT memory and it returns in hit the measurement. The format of this description
can be found in the Appendix.

This option violates the data encapsulation principle as a user gets a direct access to the GEANT
memory. It is not needed at present in DICE-95 and users are discouraged to use it until they are sure
they really need it.

4 DIGITISATION
4.1 Detector response description

The detector digitisation , i.e. simulation of the response of individual elements of a given detector
after tracking of a compete event, is done in a separate geant module.

A digitisation module has the header and the data handling part similar to a geometry module,
but instead of blocks, describing detector geometry, it describes how a specific detector response in each
separate element is produced, taken into account multiple hit overlap, noises, thresholds etc.

6

The content of the digitised information piece, the digit, should be described in the detector digiti-
zation module using the DIGI operator. This operator, similar to the HITS operator, creates necessary
banks in the GEANT JSET structure.

DICE-95 creates digits in the Atlsim format, which is similar to the format of hits, but different
from the one used for the standard GEANT digits. The difference is summarised below:

– The amount of memory used by the Atlsim digits in average is twice less then the one consumed
by the standard GEANT digits.

– The transformation of the digitized measurements into integer numbers, representing packing bins,
is done internally by the corresponding routines in the Atlsim library in the simular way as GEANT
makes it for hits. When a user reads these digitised measurements back at the reconstruction stage,
he gets them in the same coordinate system where they were “measured”. This feature free the
user from the necessity to transfer the packing constants to the reconstruction routines in a user
code and eliminates one of the importrant source of the reconstruction errors.

– It is possible to introduce cumulative digitisations in the same way as the GEANT cumulative
hits. If a non positive number was defined as the number of packing bits for a measurement, its
value and the values of subsequent measurements will be summed, provided that the other digit
parameters (track number,volume address,non-cumulative measurements) are the same.

4.2 Collecting all hits in a detector element
The Atlsim interface contains 4 integer functions (AgFHIT0, AgFHIT1, AgSDIG0, AgSDIG1) which

provide the hit access and the digitisation storage service. Their execution and the print verbosity are
controlled by the datacards in a way described later. If the operation was successful, the functions return
the OK flag (0 value).

To select a hit set to be analyzed, a AgFHIT0(Cset,Cdet) function should be called, where Cset and
Cdet are 4-letter names of a system and its sensitive detector. The function returns OK, if the selected
set contains hits and the digitisation of this system has been requested by control cards, otherwise the
digitisation should be abandoned.

If the address part of the DIGI set coincides with the address of the HIT set (same volume used as
their address), this call also defines the output DIGI bank. Otherwise, if the HITS and DIGI detectors
are different 5), the AgSDIG0(Cset,Cdet) function should be called.

After these initialization calls are successfully done, the Atlsim interface is ready to provide you se-
quentially with all hits in each detector element by performing the AGFHIT1(IH,ITRA,NUMBV,HITS)
function. Here the output arguments are :

– abs(IH) will be on output the sequential hit number in the current detector element. A negative
IH is used to signal the last hit in the detector element.

– NUMBV is an integer array, that will contain on output the list of volume copy numbers which
identify the path to this detector element.

– HITS is a real array which will contains the measurements belonging to this hit.
– abs(ITRA) will be the track number having produced this hit. The negative ITRA is used to signal

that other particles also contributed to this detector element.
The function itself returns OK until all hits in the selected set are used.

In this way in the digitization routine the user does not need neither to introduce arrays to accu-
mulate the information from different detector elements in parallel, nor even to know the full number of
the detector elements. Moreover, if a user needs to know the space position of a hit, he can simply use the
GEANT routine GDTOM to translate a point in the current detector element to the Master Reference
System, as the content of the necessary common blocks is restored by the Atlsim interface.

Finally, when all hits in one detector element are received, the AGSDIG1(ITRA,NUMBV,DIGI)
function should be called to store the simulated digitisation. Here the input arguments are:

– ITRA is the number of the track that has produced this digit. A negative ITRA will be stored as
zero.

– NUMBV is the address of volume to which this digitisation belongs.
– DIGI is a real array containing the digitised measurements.

Below you will find as an example a part of a calorimeter digitisation routine. It gets energy
deposited in a set of tubes with arbitrary geometry and produce the digitisations as the energy sum in a
standard η, φ presentation.

5) This is the case, for example, in the tile calorimeter, where hits are registered and stored per tiles with certain (r,z)
position, or in the integrated forward calorimeter, which contains tubes arranged in a certain (x,y) grid, but where the
DIGITs should be stored per ∆η × ∆φ bins.

7

Example: FWDC digitization loop:

If (AgFHIT0(’FWDC’,’FWAI’) .ne. OK) Return

If (AgSDIG0(’FWDC’,’FWDC’) .ne. OK) Return

DO While (AgFHIT1(IH,ITRA,NUMBV,HITS) .eq. Ok)

If (abs(IH) .eq. 1) then ! a new tube

Esum=0

endif

* Accumulate energy just in one tube

Esum = Esum+Hits(1)

If (IH .le. 0) then ! all hits in one tube received

* translate NVL -> x,y,z -> eta,phi

call GDTOM(zero,xyz,1)

theta = acos(xyz(3)/vmod(xyz,3))

Eta = -log(tan(theta/2))

Phi = atan2(xyz(2),xyz(1))

If (Phi .lt. 0) Phi = Phi + 2*pi

DIGI(1)=Eta

DIGI(2)=phi

DIGI(3)=Esum

If (AGSDIG1(ITRA,NUMBV,DIGI) .ne. OK) Return

Endif

EndDO

A complete digitisation module of the tile calorimeter is shown in the appendix 3 as an example.

5 INTERACTIVE VERSION
The Atlsim library linked with an iteractive GEANT provides a unique possibility to study, modify

and to debug the description of a new geometry. A special macro-command, make, compiles and executes
dynamically in a stand-along mode any selected geometry module, existing in a separate file with the .g
extension.

Using this program one can perform in particular the following operations with a single geometry
module or with a complete ATLAS detector:

– CALL AGDROP(’*’) - to clear ZEBRA memory by droping all previously created banks.

– make module-name - to compile, link and execute interactively a module written in a separate file.
The name of the file should be the same as the module name with the extension .g .

– DEBUG ON - to execute following modules in the debugging mode, with an increasing level of the
Atlsim printouts. Most of the parameters of the created materials, media, rotation matrices and
volumes will be printed.

– RZ/FILE 1 atlas.geom I - to read in a geometry file of the Atlas detector from the current directory.

– DRAW ... or DCUT ... - to draw different views of the selected system or its parts using GEANT
graphics. In the debug mode (after DEBUG ON command) an isometric view of the system is
drawn automatically.

– DTREE ... - to draw the logical tree of the GEANT volumes with their generated nicknames and
dimensions.

– DISP detm detm.rz - to survey the tree of the created data structures, to navigate through them,
to see the actual content of each created bank with its description, extracted from the module by
the Atlsim interface.

– CALL AGDUMP(’/DETM/name*’,0,’FH’) - to produce HTML descriptions of all banks of a par-
ticular MODULE name.

– KINE Ikine Par(1-10) - to define parameters of simulated particles. In addition, last two parameters
(9 and 10) limit the vertex position.
Vertex position and spread can be defined by CALL AgSVERT(x,y,z,Sx,Sy,Sz) (default are LHC
standard). Ikine =0 force simulation of a particle selected by Ptype. Ikine -1 corresponds to GENZ
input and -2 corresponds to N-tuple input, -3 being reserved for a user input format. By default,
corresponding file names ZEBRA.P, ncwn.hbook (hist # 4) and user.file. This can be overwritten
by CALL AgNZOPEN(file), CALL AgNTOPEN(file,IDH) are CALL AgUSOPEN(file).

For more details the user is referred to the XINT section of the GEANT3 manual.

8

6 DATACARD CONTROL
6.1 Program control

Usual flags from the *MODE datacards are used by the Atlsim interface to control the geometry
building (GEOM), hit saving in sensitive detector (SIMU), switching on/off of the magnetic field (MFLD),
to allow detector digitisation (DIGI) or reconstruction (RECO). The control is done in a transparent way,
so a user does not need to analyse this flags himself. The only interesting flag is GEOM, which is used
also to select the detector version. This flag is available in a geometry module as %IGEOM variable.

The verbosity of the printout is also controlled by datacards. As the print requirements may be
different not only from detector to detector, but also for different stages of the program execution, the
actual print level is always produced as a product of the detector print flag, defined in the detector data
card:

*MODE ’XXXX’ ’PRIN’ Ld . . .

and of the current stage print flag, defined in the stage data card:

*MODE ’YYYY’ ’PRIN’ Ls . . .

where XXXX are conventional detector system codes and stage codes YYYY can be ’GEOM’, ’SIMU’,
’DIGI’, ’RECO’ etc.

6.2 Print control
In general the action of the resulting print level L = Ld ∗ Ls is defined by the following strategy:

– 0 - no printout at all (same for L negative);
– 1 - minimal printout (not more than once per event);
– 2 - still reasonable amount of prints (up to 10 lines per event);
– 3 - you can tolerate it for a dozen events;
– 4 and more - debugging to find a problem.

Some particular cases for different stages are explained below.

6.2.1 GEOM - Geometry building stage
The print level decreases by one each time the program makes a jump into a next level block. So

with small L you will get only general detector dimension, and with higher L you will get parameters of
smaller detector pieces.

6.2.2 SIMU - Simulation stage
The printout, tracing particles, is done by the GEANT routine GDEBUG. This routines operates

under the control of DEBUG and ISWIT data cards (see section BASE 400) and may produce a very
abundant printout.

In addition, the Atlsim interface provides a possibility to tracing particles only in selected detector
systems. A detector *MODE ’XXXX’ ’DEBU’ D data card is used to limit the maximal volume insertion
level, where a call to GDEBUG is done. So with D=1 one will get the tracing only the system mother
volume, and with higher D from its internal volumes. The total number of volume levels, where the
tracing is done, is defined by the detector print level.

6.2.3 DIGI - digitisation stage
The detector *MODE ’XXXX’ ’DIGI’ d ’PRIN’ L data card defines weither this detector will be

digitized (d=1) or not (d=0). At the print level 3 and more, the total number of digitised hits will be
printed for each event. If the print level is 4 and more, the output digi set will be dumped. If it is 5 and
more, the input hit set is dumped.

6.3 Parameter input
The content of a data structure, defined in any module of DICE95, can be modified by a *DETP

datacard. To modify a variable, user has to provide the name of the detector, the name and the value
of the “use” selector of the desirable bank, and then names and new values of variables in the selected
bank. All modification for the same detector should be done on the same *DETP datacard, which can
be continued an several lines following the FFREAD rules.

Example. To modify the “Dx of the electronics board” in the example on page 5 on can use the
following datacard:

*DETP ’GAAS’ ’GAAG=’3. ’Dxele=’3.1

Note that dots are mandatory, but identificators are case unsensitive.

9

7 DOCUMENTATION AND DATABASE SUPPORT
As it has been already mentioned, when the FILL statement is executed by the Atlsim interface,

the data are saved as a bank in the master detector (DETM) structure. At the same time the Atlsim
interface creates the appropriate documentation banks for DZDOC package [2]. For each bank in the
DETM structure the documentation banks contain the creation date, authorship information, the variable
names and comments as well as the full information on the bank relationship.

All this information is maintained in a RZ-file detm.rz which can be analysed by the DZDOC
package. Running its interactive version DZEDIT, users can get the full information on the created banks
as well as to print a hardcopy of the current input data structure description. As the documentation
RZ-file is updated automatically each time the program has been changed, this description is always
up-todate.

It is possible to get with the USE operator not only versions of banks, defined directly in the
module, but also to read them from the geometry data base, supported centrally.

Acknowledgments
Many people participated in discussions.. Authors want to thank Maxim Potekhin and Serguey

Baranov, who were the first “test” users of the Atlsim package, Rob Veenhov and Sasha Vanyashin for
many valuable comments on the draft of this paper. We are grateful to Rene Brun, who has initiated the
present work and was extremely helpful to find a global view on its development.

References
[1] GEANT - Detector Description and Simulation Tool. CERN Program W5013. Geneva, 1994.
[2] DZDOC - Bank documentation tools. In ZEBRA, CERN Program Q100/Q101. Geneva, 1993.
[3] HEPDB - Database Management Package. CERN Program Q180, Geneva, 1993.

10

Appendix 1: Description of the hit/digi banks used in GEANT3.

Hits and digitisations are stored in two symmetric sets. Internal names of sets, containing hits, end
with H, while internal names of digitisation sets end with D. This is transparent to a user who always
address them with the sub-system name. This allows to have different detector parameter banks (SEJD)
for hits and digitisations.

SEJD

SETS
1

?

GEANT detector parameters
ND=100

SEJD

Hit parameters (by GSDETH)
ND=4

SJDH

1

?

Digit parameters (by GSDETD)
ND=2

SJDD

2

?

Atlas Hit/Digit description
ND=200

SJDU

3

?

SEJD GEANT detector parameters

-- entered file at 13-Dec-94 14:59

Bank IDH SEJD GEANT detector parameters (filled by GSDET)

Author R. Brun

Version 3.01

Store /GCBANK/

Division Constant

NL 4

NS 4

ND 100

Up SETS -1

IO-Charac 10I / 1H 1I

---------- Description of the links ----------

1 SJDH - pointer to hit parameters

2 SJDD - pointer to digitisation parameters

3 SJDU - pointer to users parameters

---------- Description of the data words ----------

1 Nwv Number of words to store packed hit descriptors

2 Nv Number of hit descriptors (Volumes + non-cumulative elements)

3 Nwh Number of words per packed hit part

4 Nh Number of cumulative elements per hit

5 Nwd Number of words per packed digit part

6 Nd Number of cumulative elements per digitisation

7 NWHI primary size of hit bank

8 NWDI primary size of digitisation bank

9 Npath Number of paths through JVOLUM tree; (-1) after GsDETV call

10 Idm For aliases only, IDET of mother detector

--REP level=1 Nv times

11 NameVol Name of a volume or a non-cumulative element

12 NbitVol Number of bits for packing its number

--REP level=1 -- End --

11

SJDH Hit parameters (by GSDETH)
-- entered file at 13-Dec-94 14:59

Bank IDH SJDH Hit parameters (filled by GSDETH)

ND 4 - per each hit element

Up SEJD -1

IO-Charac / 1H 1I 2F

---------- Description of the data words ----------

--REP level=1 Nh times :

1 NameHit Name of a cumulative element

2 NbitHit Number of bits for its packing

3 origin displacement for packing

4 factor scale for packing

SJDD Digit parameters (by GSDETD)
-- entered file at 13-Dec-94 14:59

Bank IDH SJDD Digit parameters (by GSDETD)

ND 2 - per each digi element

Up SEJD -2

IO-Charac / 1H 1I

---------- Description of the data words ----------

--REP level=1 Nd times :

1 NameDig Name of the digit descriptor

2 NbitDig Number of bits for its packing

SJDU Atlas Hit/Digit description
-- entered file at 10-Jan-95 10:44

Bank IDH SJDU Atlas Hit/Digit description

Author Pavel Nevski

ND 200

Up SEJD -3

IO-Charac -F

---------- Description of the data words ----------

1 Iadr1 displacement for hit description part = 10

2 Nha Number of hit descriptors (both in non- and cum. parts)

3 Iadr2 displacement for volume description part = 10+10*Nh

4 Nva number of all volume descriptors (branching or not)

5 Iadr3 displacement for the free space = 10+10*Nh+3*Nv

6 Nvb number of real volume branchings for NUMBV

7 option 1 - single step hit option (S in any hit element)

8 serial sensitive volume serial number for this table

9 IdType ATLAS detector number

10 Iprin current print flag both for HITS and DIGI

--REP level=1 Nha times, j=10*ih

j+1 hit encoded hit name

j+2 option encoded hit option (R-rounding)

j+3 Nb number of bit requested

j+4 Fmin hit lower limit

j+5 Fmax hit upper limit

j+6 Origin Geant origin

j+7 Factor Geant factor

j+8 Nbit number of bit allocated

j+9 Iext address of the Geant user step routine

j+10 Ifun hit function code (1-18 at present)

--REP level=1 Nva times, k=10+10*Nha+3*iv

k+1 Ivol Volume of branching (pointer in JVOLUM)

k+2 Ncopy number of branchings

k+3 Nb number of bit needed

12

Appendix 2: example of a geometry module.

MODULE GAASGEO is the Geometry of the GaArsenid forward tracker

Author Rene Brun, Pavel Nevski

Created 23 sept 94

+CDE,AGECOM,GCONST.

Content GAAS, GDSi, GSij, GHij, GDij, GSUB, GASS, GELE, GSUP

Structure GAAG { Version, Ndisc, DrCounter, DfCounter, DzCounter,

TCKsubs, TCKsupp, DXele, DYele, Dzele }

Structure GDSi { Disc, RIdisc, ROdisc, ZDisc }

Real Zdel,Rj,Zk,DR

Integer Idisc,j,k,N,ndv

* ---

Fill GAAG ! geometry description

version = 3 ! layout version (1-Cosiner,2-Panel,3-Annecy)

Ndisc = 2 ! Nr. of discs (on each side)

DrCounter = 5.3 ! DX (Dr) of a counter

DfCounter = 2.6 ! DY (Dphi) of a counter

DzCounter = .02 ! DZ (Thickness) of a counter

TCKsubs = .01 ! Thickness of the substrate

TCKsupp = 0.8 ! Thickness of the support

DXele = 3. ! DX (Dr) of the electronics board

DYele = 2. ! DY (Dphi) of the electronics board

DZele = .06 ! DZ (Thickness) of the electronics board

Fill GDSi ! individual disc parameters

Disc = 1 ! disc number

RIdisc = 20. ! inner Radius

ROdisc = 35. ! outer Radius

Zdisc = 156. ! Position along Z

Fill GDSi ! same

Disc = 2 ! second disc

RIdisc = 25. ! inner Radius

ROdisc = 40. ! outer Radius

ZDisc = 185.5 ! Position along Z

*

USE GAAG version=3

* ---

Create GAAS

call GSPOS(’GAAS’,1,’INNE’,0.,0.,0., 0, ’MANY’)

* ---

Block GAAS is GaArsenid forward tracker

Material Air

Medium Atlas

Attribute gaas seen=0

Shape TUBE Rmin=10 Rmax=50 dz=200

Zdel = max(gaag_DZele,gaag_DZcounter+gaag_TCKsubs) ! used later

do idisc = 1,nint(gaag_Ndisc)

*

USE GDSi Disc =idisc

* ---

Create GDSi

Position GDSi z=+gdsi_Zdisc "forward"

Position GDSi z=-gdsi_Zdisc ThetaZ=180 "backward reflected"

enddo

endblock

* ---

13

Block GDSi is one dics of GaArsenid

Attribute gdsi seen=0

Shape TUBE Rmin = gdsi_RIdisc _

Rmax = sqrt((gdsi_ROdisc+gaag_DXele)**2+gaag_DYele**2) _

dz = (gaag_TCKsupp+8*Zdel)/2

Create and Position GSUP dz=gaag_TCKsupp/2

DR = 0

n = nint((gdsi_ROdisc-gdsi_RIdisc)/gaag_DRcounter)

if (n>1) DR=(gdsi_ROdisc-gdsi_RIdisc-gaag_DRcounter)/(n-1)

do j=1,n ! make radial divisions

Rj = gdsi_RIdisc+(j-1)*DR

Create GSij

do k=1,2

zk=-gaag_TCKsupp/2-Zdel*(1+2*mod(j,2))+(k-1)*(gaag_TCKsupp+4*Zdel)

Position GSij z=zk

enddo

enddo

endblock

* ---

Block GSij is a sub-disc - one ring of overlapping counters

Shape TUBE Rmin = Rj _

Rmax = sqrt((Rj+gaag_DRcounter+gaag_DXele)**2+gaag_DYele**2) _

dz = Zdel

Ndv = int (2*pi / atan(gaag_DFcounter/(Rj+gaag_DRcounter)/2)/4+1)

Create GHij

position GHij z=-Zdel/2

position GHij z=+Zdel/2 AlphaZ=360.0/(2*Ndv)

endblock

* ---

Block GHij is a half of the ring - one plane of counters

Shape TUBE DZ=Zdel/2

Create GDij

endblock

* ---

Block GDij is a sector containing one counter

Shape DIVIsion Iaxis=2 Ndiv=Ndv

Create and Position GSUB x = Rj + gaag_DRcounter/2

Create and Position GELE x = Rj + gaag_DRcounter + gaag_DXele/2

endblock

* ---

Block GSUB is a GAAS substrate plus sensitive counter

Component H A=1 Z=1 W=8

Component C A=12 Z=6 W=5

Component O A=16 Z=8 W=2

mixture Plexiglass Dens=1.10

Attribute GSUB SEEN=1 COLO=3

Shape BOX dx=gaag_DRcounter/2 dy=gaag_DFcounter/2 _

dz=(gaag_DZcounter + gaag_TCKsubs)/2

Create and Position GASS z=-gaag_TCKsubs/2

endblock

* ---

14

Block GASS is a sensitive layer of the Ga Arsenid counter

Component GA A=69.7 Z=31 W=1

Component AS A=74.9 Z=33 W=1

Mixture GaArsenid Dens=5.307

Medium sensitive SteMax=gaag_DzCounter/5 Isvol=1

Attribute GASS SEEN=1 COLO=4

Shape BOX dz=gaag_DZcounter/2

* -

HITS GASS x:11: y:10: El:0:

* -

endblock

* ---

Block GELE is an electronic board for one counter

Material silicon A=28.09 Z=14 Dens=2.33 RadL=9.36 AbsL=45.5

Attribute GELE SEEN=1 COLO=5

Shape BOX dx=gaag_DXele/2 dy=gaag_DYele/2 dz=gaag_DZele/2

endblock

* ---

Block GSUP is a support for a whole GaAs disc

Component F A=14.1 Z=7 W=.95

Component C A=12.01 Z=6 W=.05

Mixture C_whiskers Dens=.24

Attribute GSUP SEEN=1 COLO=7

Shape TUBE Rmin=0 Rmax=0 dz=0

endblock

end

15

Appendix 3: example of a digitisation module.

Module TILEDIG is the DIGITIZATION routine OF THE TILE calorimeter

Author Marzio Nessi

Created 10 Jan 94

Structure Tdig { Version,Scale,Emax,Etamax,Deta,Dphi}

+CDE,AGECOM,GCONST,GCUNIT.

*

INTEGER NV,NH,ND

PARAMETER (NV=10,NH=10,ND=10)

INTEGER NVL(NV), AgFHIT0,AgFHIT1,AgSDIG0,AgSDIG1, LTRA,IH,IR

REAL VMOD, HITS(NH),DIGI(ND), Esum,The,Eta,Phi,E,

zero(3)/3*0./, xyz(3)

* --

*

If (FIRST) then

Fill TDIG ! Digitization parameters

Version= 1 ! version

Scale = 1.e6 ! ADC scale factor

Emax = 100 ! Max energy

etamax = 3.0 ! rapidity limit

deta = 0.025 ! eta granularity

dphi = 2*pi/256 ! phi garnularity

DIGI TBMA eta:tdig_Deta:(-3,3), phi:tdig_Dphi:(0,2*pi),

Eloss:0:(0,tdig_Emax)

FIRST = .false.

endif

* --

If (AgFHIT0(’TILE’,’TBSA’) # ok) Return

If (AgSDIG0(’TILE’,’TBMA’) # ok) Return

DO While (AgFHIT1(IH,LTRA,NVL,HITS) .eq. Ok)

If (abs(IH) = 1) then ! a new tile

Esum=0

endif

* Accumulate just energy in one tile

E = Hits(1)

Esum = Esum+E

* all hits in this tile received ?

If (IH<=0) then

* translate NVL -> x,y,z -> eta,phi

call GDTOM(zero,xyz,1)

the = acos(xyz(3)/vmod(xyz,3))

Eta = -log(tan(the/2))

Phi = atan2(xyz(2),xyz(1))

If (Phi < 0.) Phi = 2*pi + Phi

DIGI(1) = Eta

DIGI(2) = phi

DIGI(3) = Esum

If (AGSDIG1(LTRA,NVL,DIGI) # ok) Return

Endif

EndDO

END

16

